
Version 1.0 - July 2003

Software Development Kit

for the following
Software Languages/Environments:

Microsoft Visual C++

Borland C++ Builder

Microsoft Visual Basic

Borland Delphi

This SDK requires programming knowledge on one the following programming languages:

Microsoft Visual C++ or Borland C++ Builder or Microsoft Visual Basic or Borland Delphi

Copyright 2003
TRC Development b.v.

Rotterdam Airport
The Netherlands

www.therealcockpit.com

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 2

List of Contents

1. Introduction ..4

2. Recommended to read ..5

3. How do SimKits work?...6

4. Principle of control ...7
- Warning Lights & Switch ...7
- Handbrake...8
- Avionics Switch ...8
- Throttle ..8
- Mixture...8
- Prop...8
- Master Switch..8
- Fuel selector + Shut off ...8
- Flaps..8
- Trim wheel...8
- Starter Switch ..8
- Rudder Pedals...8
- Yoke ..8
- Autopilot Switches ...8
- Circuit breakers (4 outputs, 15 inputs) 1)..8
- Switches (16 inputs) ..8

5. Communication between PC and SimKits gauges ..9

6. Installing the SDK software..10

7. Installing the USB driver software..14

8. Use of IP address and Port settings ..15

9. Instruments Variable names and I/O connection...16
Instruments Controlled as a Device ...16

Instruments Controlled by pin I/O...17

Error codes...19

10. Communication Protocol description ...20
Reading..20

Writing..20

11. Central Control Unit ...21
List and position of the I/O ...21

12. Precautions when handling the CCU...22

13. CCU Hardware Specifications ...23

14. Performing your first tests..24

15. Programming examples for Microsoft Visual C++ ...26
Example 1 - Driving a device - Startup...26

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 3

Example 2 - Driving a device - Sending Data ..27

Example 3 - Driving a device - Receiving Data..28

Example 4 - Driving a device - Cleanup...29

16. Programming examples for Borland C++ Builder ..30
Example 1 - Driving a device - Startup...30

Example 2 - Driving a device - Sending Data ..31

Example 3 - Driving a device - Receiving Data..32

Example 4 - Driving a device - Cleanup...33

17. Programming examples for Microsoft Visual Basic ...34
Example 1 - Driving a device - Startup...34

Example 2 - Driving a device - Sending Data ..35

Example 3 - Driving a device - Receiving Data..36

Example 4 - Driving a device - Cleanup...37

18. Programming examples for Borland Delphi ...38
Example 1 - Driving a device - Startup...38

Example 2 - Driving a device - Sending Data ..39

Example 3 - Driving a device - Receiving Data..40

Driving the devices - Cleanup ..41

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 4

1. Introduction

SimKits are realistic Flight Simulator Instruments which are controlled by an electronics interface
board called CCU and software drivers, developed by TRC Development b.v.

From the beginning of the introduction of the SimKits products, there are drivers available which
connect directly with Microsoft Flight Simulator (also using FSUIPC, written by Pete Dowson).

Because of many requests from cockpit builders with programming skills, TRC Development has
produced a so-called SDK. The SDK enables you to drive the SimKits instruments from your own
(Flight Simulator) software.

To use the SDK, you must be a programmer. It is beyond the scope of this manual and
beyond SimKits Support to learn you how to program. SimKits / TRC Development will
therefore not give any support on general programming questions, but on serious bug
reporting only..

Basically, with the use of the SDK, there is no limit to use the SimKits instruments from any type of
software written by yourself.

With the use of the SDK, you can read and write values directly to and from SimKits Devices.

There is no need to write a calibration program yourself. Please use the existing calibration tool to
calibrate your devices.

This SDK requires programming knowledge on one the following programming languages:

Language/Environment:
1. Microsoft Visual C++
2. Borland C++ Builder
3. Microsoft Visual Basic
4. Borland Delphi

This manual introduces how to use the SDK variables for the different programming environments.

When you find a bug in the SDK, there is only one way to send a comment or request for help.
There is a special form on the website under “Support”. When you encounter a problem, which is in
your opinion not a programmer error, please enter the appropriate information into the “Bug Report”
form and we will respond to you. No other bug reports can be accepted.

Copyright 2003
TRC Development b.v.
Rotterdam Airport
The Netherlands

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 5

2. Recommended to read

Simkits has more documentation available, which we recommend strongly to read prior to the use of
the SDK and installation of any hardware and software.

The manuals and information are available at http://www.simkits.com/manuals.php

The software available at: http://www.simkits.com/software.php

The construction manuals available at http://www.simkits.com/manuals.php

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 6

3. How do SimKits work?

SimKits instruments and gauges are designed from scratch to emulate existing mechanical flight
instruments. They are produced using plastic injection molding and made mainly from high quality
ABS plastics.

The pointers and moving parts are controlled via (almost) standard servos as used in model
airplanes or model racing cars. They are driven by dedicated electronics, the CCU.

Due to the very low forces inside the SimKits instruments, the (hobby) servo is a great electronic
device and very well suitable for it’s purpose. Practically only a few percent of its force is used to
drive pointers and other moving mechanics in the SimKits instruments. Therefore the expected
mechanical life is very long and the servos will last almost forever.

Although that standard servo mechanisms are used, not just any servo can be used in the SimKits,
due to small mechanical differences and measurements between the brands on the market.

SimKits has choosen the Hitec HS300 or Hitec HS322 (or their exact equivalents) as driving servos.

Servos have the ability to move the outgoing axis for approx. over 180º. For most gauge
applications, this is enough. The position of outgoing axis of the servo can be precisely positioned
via a so-called pulse-width signal, provided by the CCU (Central Control Unit).

Some movements in a SimKits gauge however, expect a continous movement of over 360º. In this
situation there is also a servo used, but the servo is (prior to mounting) modified in such a way, that
a continous turn in clockwise and anti-clockwise direction can be achieved.

You can modify a servo yourselves, or buy one modified directly from SimKits.

Each SimKits instrument has a ribbon cable coming out. This ribbon cable connects to a certain
connector on the CCU. Each individual pin on this connector supplies the necessary signals from
and to a SimKits gauge.

The Central Control Unit (only available built and tested) is a Printed Circuit Board containing its own
micro processor, memory and electronics to drive the servo motors, read out the dials and to control
the instrument lighting. The Central Control Unit is a stand-alone Printed Circuit Board which needs
to be powered (5 volts only) from a PC AT Power Supply through a standard disk drive power
connector. The board powers all instruments. The micro processor communicates via a single USB
with the PC where TRC Development's driver and SDK software is running.

The Central Control Unit has unique features. The software (firmware) inside the board is
downloaded from the PC via USB automatically, every time you power up the board. The software -
which resides normally on the PC hard disk - can therefore be "refreshed" any time by downloading
the latest drivers and firmware from the SimKits website. This assures you of having the latest
improved software always available.

The Central Control Unit has a very large number of I/O lines. There are 38 I/O connectors available
to control 38 different instruments, switches, lights, etc. Some of these I/O connectors (like the
analog outputs) are for future expansion and are not yet supported.

See also the separate CCU manual.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 7

4. Principle of control

The SimKits instruments can be divided into 2 different classes of devices:

1. Controlled as a Device
2. Controlled by separate pin I/O

There are instruments which are controlled as a Device, which means that you cannot access or
read from individual I/O lines for that device.

The reason for the division into 2 different types of instruments is obvious. As the development of the
gauges drivers and its calibration software took the TRC Development team several man years, it
would be very time consuming for you as a programmer to re-invent the wheel again.

For the gauges, controlled as a complete device, you benefit from special designed routines, built
into the SDK correcting non-linearity of the servos, non-liniearity of the position sensors and fast
read-back and write routines allowing the gauges to react as they do now. The communication
update rate between gauges/CCU/PC is now over 35 times per second.
Many years of development and “try-and-error” are already behind our programmers and now these
fine routines are ready to be used by yourselves.

So how does it work exactly? For example, the Altimeter contains 2 servos. A standard servo and a
modified servo. The modified servo drives the altimeter pointers via a gearw wheel mechanisme
which is built like a clock (seconds, minutes, hours). However, unlike a lock, each pointer has to turn
10 times to have the sucessive pointer turning once. The movement of the fastest pointer, the middle
pointer and the slowest pointer are measured by position sensors and photo interruptors.

The Altimeter also contains a knob, with which you can turn (by hand) a so-called Rotary Encoder.
This Rotary Encoder cannot be read out via the SDK directly. The routines inside the SDK control
this part of the movement completely, freeing you from the difficult job to write your own control
routines for the servo of the pressure scale to move into the right direction and position.

The knob movement therefore is read out by the SDK software, interpreted and moves the pressure
scale of the Altimeter, which values (the set pressure) you can read out. Using that information
(together with other information from your flight simulator program) you can write the proper values
to the Altimeter pointer.

Instruments controlled as a device
- Altimeter
- Airspeed Indicator
- Tacho meter
- Vertical Speed Indicator
- Attitude Indicator
- Heading Indicator
- Turn Coordinator
- ADF Indicator
- VOR 1 Indicator
- VOR 2 Indicator
- EGT/Fuel Flow Indicator
- Fuel Indicator Left/Right
- Warning Lights & Switch
- Oil Temp. & Press. Ind.
- Suction Gauge/Ammeter
- Wet Compass

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 8

Instruments which can be controlled from each pin on their connector
The tables in chapter 9 give information on which pins/signals can be controlled or read out directly
via the SDK.

- Handbrake
- Avionics Switch
- Throttle
- Mixture
- Prop
- Master Switch
- Fuel selector + Shut off
- Flaps
- Trim wheel
- Starter Switch
- Rudder Pedals
- Yoke
- Autopilot Switches
- Circuit breakers (4 outputs, 15 inputs) 1)
- Switches (16 inputs)

1) In order to drive the Circuit breakers, you need to decode the 4 Outputs present on the connector
(CN 33) into 15 logical signals by means of a 4-to-16-line encoder. Output 0 of that encoder will then
stay unconnected. The other 15 Outputs of the encoder need to control special hardware which
enables a circuit breaker to pop out.

Ther are 15 inputs available on CN 33 to check if a circuit breaker is the IN or OUT position.

SimKits will provide in the near future especially designed hardware for the decoding

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 9

5. Communication between PC and SimKits gauges

At the user level, communication with the SimKits devices is achieved using TCP/IP. This type of
communication enables your program to drive the SimKits devices on the same computer where the
CCU is installed or via another computer utilizing a standard network.

The SDK software handles the TCP/IP communication layer, so using the SDK does not require
indeep TCP/IP programming knowledge.

The graph below describes the data flow from the user program to the SimKits Devices:

Actual communication between the CCU and the computer is realised via USB.

Although part the communication between your software and the SDK is carried out using a network
protocol, it is not necessary to drive the devices via a network or another computer, nor do you have
to have a network card installed.
However, if you configure the right IP address in your application, it is possible to control the devices
via a network from another computer.

The SDK software does not read or write any values to a flight simulator program. A link to a flight
simulator must be made by your application software.

If you prefer to drive the instruments from Microsoft Flight Simulator 2002/4 we recommend you to
use the ready available TRC Link software, which interfaces with FSUIPC from Pete Dawson.
FSUIPC is the link between the TRC Link software and Microsoft Flight Simulator 2002/4.

Using the sample projects provided with this SDK as a start, you can create a custom project within
a short period of time.

USBTCP/IP User program,
made with the

SDK

TRC Custom
(instead of
TRC Link)

CCU SimKits

device

Calibration
information SimKits

device

SimKits
device

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 10

6. Installing the SDK software

The installation software will install the files and software necessary to use the SDK and the
Calibration software.

All necessary files to start using the SDK are packed in the file SDKsetup.exe (and Installshield
installer) and will be automatically installed using Installshield.

However, there are 2 files, the USB driver trcdrv.sys and the trccntl.inf file packed together in
driver.zip, which need to be downloaded from the SimKits website software download area and
unzipped into the directory:

C:\Program Files\TRC Development\SDK

When you have downloaded SDKsetup.exe, please exit all other programs and start the
SDKsetup.exe program.

Now Installshield will install the SDK components in the following directories:

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK

TRCCustom.exe
This program is the SDK software.

Calibrations.cfg
This file contains the calibration information.

DeIsL1.isu
This file is needed if you want to un-install the SDK

_DEISREG.ISR
This file is needed if you want to un-install the SDK

_ISREG32.DLL
This file is needed if you want to un-install the SDK

The files below will be installed in the directory:
(These files are common for all programming environments)

for Windows 98
C:\Windows\System

for Windows NT/2000
 C:\WinNT\System32

for Windows XP
 C:\Windows\System32

TRCPanel.cpl
This file is the calibration program. It is only accessible via the control panel and cannot run as an executable.

trccntl.drv
This is a driver file for the CCU board.

vcl50.bpl
This file is needed for running the TRCCustom.exe program

cc3250.dll
This file is needed for running the TRCCustom.exe program

cc3250mt.dll
This file is needed for running the TRCCustom.exe program

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 11

bcbsmp50.bpl
This file is needed for running the TRCCustom.exe program

borlndmm.dll
This file is needed for running the TRCCustom.exe program

vclx50.bpl
This file is needed for running the TRCCustom.exe program

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Borland C++ Builder

Project1.bpr
This file contains information about the settings of the project.

Project1.cpp
This file contains C++ source code for the general application.

TRCsampleCB.exe
This is the example program.

Project1.res
This file contains information about the icons, bitmaps, etc.

TRC.ico
This is the TRC Development icon.

TRC_TCP.cpp
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software. This code
handles the communication layer.

TRC_TCP.h
This file contains the declarations for the TRC_TCP.cpp file.

Unit1.cpp
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software. This code
handles the user interface.

Unit1.dfm
This file contains information about the layout and names of program items such as buttons, text, etc.

Unit1.h
This file contains the declarations for the Unit1.cpp file.

Unit2.cpp
This is sourcecode for the settings dialog.

Unit2.dfm
This file contains information about the layout and names of program items such as buttons, text, etc.

Unit2.h
This file contains the declarations for the Unit2.cpp file

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Microsoft Visual C++

ChildView.cpp
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software. This code
handles the user interface.

ChildView.h
This file contains the declarations for the ChildView.cpp file.

Instruments.cpp
This is sourcecode for the list of available SimKits devices.

Instruments.h
This file contains the declarations for the Instruments.cpp file.

MainFrm.cpp
This file contains C++ source code for the general application.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 12

MainFrm.h
This file contains the declarations for the MainFrm.cpp file.

Options.cpp
This is sourcecode for the options menu.

Options.h
This file contains the declarations for the Options.cpp file.

resource.h
This file contains the declarations for the layout of the program.

StdAfx.cpp
This file contains sourcecode which points to required external resources.

StdAfx.h
This file contains the declarations for the StdAfx.cpp file.

TRC_SDK.cpp
This file contains C++ source code for the general application.

TRC_SDK.dsp
This file contains information about the settings of the project

TRC_SDK.dsw
This file contains information about the settings of the project

TRC_SDK.h
This file contains the declarations for the TRC_SDK.cpp file.

TRC_SDK.rc
This file contains information about the icons, bitmaps, etc.

TRC_TCP.cpp
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software. This code
handles the communication layer.

TRC_TCP.h
This file contains the declarations for the TRC_TCP.cpp file.

TRC_SDK.clw
This file contains information for the ClassWizard of Microsoft Visual C++

The file below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Microsoft Visual C++\Debug

TRCsampleVC.exe
This is the example program.

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Microsoft Visual C++\res

TRC.ico
This is the TRC Development icon.

TRC_SDK.exe.manifest
This file contains information about the settings of the project.

TRC_SDK.rc2
This file contains information about the icons, bitmaps, etc.

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Microsoft Visual Basic

TRCsampleVB.exe
This is the example program.

Dialog.frm

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 13

This file contains information about the layout of the settings dialog.

Form1.frm
This file contains information about the layout of the main program.

Form1.frx
This file contains supplemental information for Form1.frm

Project1.vbp
This file contains information about the settings of the project.

Project1.vbw
This file contains information about the settings of the project.

TRC_TCP.bas
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software.

TRC_SDK.bas
This file contains C++ source code for the general application.

The files below will be installed in the directory:
C:\Program Files\TRC Development\SDK\Examples\Borland Delphi

Project1.dof
This file contains information about the settings of the project.

Project1.dpr
This file contains information about the settings of the project.

TRCsampleD.exe
This is the example program.

Project1.res
This file contains information about the icons, bitmaps, etc.

TRC.ico
This is the TRC Development icon.

TRC_TCP.pas
This is example sourcecode, which gives a few examples on how you could drive the SimKits devices with your own software. This code
handles the communication layer.

Unit1.dfm
This file contains information about the layout of the main program.

Unit1.pas
This file contains C++ source code for the general application.

Unit2.dfm
This file contains information about the layout of the settings dialog.

Unit2.pas
This file contains C++ source code for the settings dialog.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 14

7. Installing the USB driver software

The USB driver software is installed by connecting the Central Control Unit to your PC.

Your PC will recognize a new hardware product and wants to install a driver for it.

Make the following steps:

Step 1:
Connect the Central Control Unit to the power supply. Make sure the power supply is switched on.

Step 2:
Connect the USB cable to the Central Control Unit and connect the USB cable to your computer.

Your screen will show a message that new USB hardware has been detected. Immediately
thereafter the “New hardware found” screen comes up. Now click Next.

Click on “Search for the best driver for your device. (Recommended).”

Specify a location, choose the folder C:\Program Files\TRC Development\SDK (or the folder where
you extracted the trcdrv.sys and .inf files in)

Now click next to install the software.

If the software is installed properly, the following screen is shown:

This concludes the installation of the USB hardware driver. Now you are ready to install the
Calibration Software and to install the Interface Software called TRC Custom.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 15

8. Use of IP address and Port settings

The IP address and port number used in your application and the TRCCustom.exe program must
be configured correctly, otherwise the SDK software won't work.

The IP address used in your application must match the IP address of the computer where the CCU
and TRCCustom.exe are installed.

The port number used for TRCCustom.exe must match the port number used for your application, to
allow communication between the two programs.

These settings depend on your hardware configuration. Below you’ll find examples on possible
settings.

If you have the CCU installed at the same computer as where your application runs on:

Use 127.0.0.1 as IP address for your application. The TRCCustom.exe program and your
application must always have the same port number configured. The default port number is 1927. If
this port is in use (which is unlikely), then try a different number.

If you have the CCU and TRCCustom.exe installed at a different computer as where your application
runs:

Use the IP address of the computer where the CCU is installed. You can find the IP address of a
computer with tools like winipcfg or ipconfig. Use the windows manual if you don't know how to find
the IP address. The TRCCustom.exe program and your applicationalways must have the same port
number configured. The default port number is 1927. If this port is in use (which is unlikely), then try
a different number.

Warning: The TRCCustom.exe program must always run at the same computer as where your
CCU is installed.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 16

9. Instruments Variable names and I/O connection

As explained in chapter 4, there are instruments which are controlled as a Device, which means that
you cannot access or read from individual I/O lines for that device. For other instruments you can
read or write directly to the pin of the connector of such a device.

The SimKits devices, which do not have a specified pin number cannot be custom made. Use the
Original SimKits instruments for these devices. The Read/Write row indicates whether the device can
be read or written with the software. The I/O type row indicates whether the hardware pin is a digital
output (Dout), digital input (Din), analog input (Ain), or not specified (ns).

Some devices require some extra notes. This is indicated with a 1) sign. You can find the
correspondent note at the end of the variable types list. Please note that not all devices can be
assigned a value, for example the throttle, it can only be read, not written. Some readable devices do
not return the actual servo position, but the last value written to it. These are devices, which operate
with a servo (a gauge) or a light (warning panel).

Note: values may be written including up to 3 decimals.

Instruments Controlled as a Device

Device Variable Name Lowest

Value
Highest
Value

Read/
Write

Information

adf_compass 0 360 RW degrees
adf_heading 0 360 R degrees
airspeed 0 400 RW knots
alti_height 0 100000 RW feet
alti_pres_us 28.1 31.6 RW inch Hg
alti_pres_metric 945 1050 RW millibar
amp -60 60 RW ampere
attitude_bank -90 90 RW degrees
attitude_pitch -25 25 RW degrees
egt 312.1 712.1 RW fahrenheit
fuelflow 0 19 RW gallon/hour
fuellevel_left 0 26 RW gallon
fuellevel_right 0 26 RW gallon
vac 1) 3 7 RW inch Hg
heading_bug 0 360 R degrees
heading_compass 0 360 RW degrees
heading_correction 2) 0 360 RW degrees
oil_pres 0 115 RW psi
oil_temp 75 245 RW farenheit
tachometer 0 3500 RW rpm
turn_inclino 3) -120 120 RW position
turn_rate 4) -45 45 RW degrees
verticalspeed -2000 2000 RW feet/min
vor1_compass 0 360 R degrees
vor1_glideslope 5) -10 10 RW position
vor1_nav 6) 1 3 RW position
vor1_gs 7) 1 2 RW position
vor1_localiser 8) -10 10 RW position
vor2_compass 0 360 R degrees
vor2_localiser 8) -10 10 RW position
vor2_flag 9) 1 3 RW position
wetcompass 0 360 RW degrees
warning_leftfuel 10) 0 1 RW on - off

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 17

warning_rightfuel 10) 0 1 RW on - off
Device Variable Name Lowest

Value
Highest
Value

Read/
Write

Information

warning_fuel 10) 0 1 RW on - off
warning_bar 10) 0 1 RW on - off
warning_oilpress 10) 0 1 RW on - off
warning_leftvac 10) 0 1 RW on - off
warning_rightvac 10) 0 1 RW on - off
warning_vac 10) 0 1 RW on - off
warning_volts 10) 0 1 RW on - off

Instruments Controlled by pin I/O

Device Variable
Name

Lowest
Value

Highest
Value

Read/
Write

Information Connector/
Pin Number

I/O
type

cb_avnfan 11) 0 1 RW on-off CN33 pin 6 Din
cb_autopilot 11) 0 1 RW on - off CN33 pin 7 Din
cb_gps11) 0 1 RW on - off CN33 pin 8 Din
cb_navcom1 11) 0 1 RW on - off CN33 pin 9 Din
cb_navcom2 11) 0 1 RW on - off CN33 pin 10 Din
cb_adf 11) 0 1 RW on - off CN33 pin 11 Din
cb_xpndr 11) 0 1 RW on - off CN33 pin 12 Din
cb_flap 11) 0 1 RW on - off CN33 pin 13 Din
cb_inst 11) 0 1 RW on - off CN33 pin 14 Din
cb_avnbus1 11) 0 1 RW on - off CN33 pin 15 Din
cb_avnbus2 11) 0 1 RW on - off CN33 pin 16 Din
cb_turncoord 11) 0 1 RW on - off CN33 pin 17 Din
cb_instlts 11) 0 1 RW on - off CN33 pin 18 Din
cb_altfld 11) 0 1 RW on - off CN33 pin 19 Din
cb_warn 11) 0 1 RW on - off CN33 pin 20 Din
switch_avionics 0 1 R on - off CN2 pin 2 Din
switch_masteralt 0 1 R on - off CN8 pin 2 Din
switch_masterbat 0 1 R on - off CN8 pin 3 Din
switch_fuelselector 12) 1 4 R on - off CN13 pin 2-4 Din
switch_fuelcutoff 0 1 R on - off CN13 pin 5 Din
switch_starter 13) 1 5 R position CN17 pin5-8 Din
switch_pushtotalk 0 1 R on - off CN34 pin 3 Din
switch_altstaticair 0 1 R on - off CN34 pin 4 Din
switch_fuelpump 0 1 R on - off CN34 pin 5 Din
switch_bcn 0 1 R on - off CN34 pin 6 Din
switch_land 0 1 R on - off CN34 pin 7 Din
switch_taxi 0 1 R on - off CN34 pin 8 Din
switch_nav 0 1 R on - off CN34 pin 9 Din
switch_strobe 0 1 R on - off CN34 pin 10 Din
switch_pitotheat 0 1 R on - off CN34 pin 11 Din
switch_extra1 0 1 R on - off CN34 pin 12 Din
switch_extra2 0 1 R on - off CN34 pin 13 Din
switch_extra3 0 1 R on - off CN34 pin 14 Din
switch_extra4 0 1 R on - off CN34 pin 15 Din
switch_extra5 0 1 R on - off CN34 pin 16 Din
switch_extra6 0 1 R on - off CN34 pin 17 Din
switch_extra7 0 1 R on – off CN34 pin 18 Din
trimwheel 0 1024 R position CN16 pin 4 Din
throttle 0 1024 R position CN4 pin 2 Ain
mixture 0 1024 R position CN5 pin 2 Ain

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 18

propadjust 0 1024 R position CN6 pin 2 Ain
Device Variable
Name

Lowest
Value

Highest
Value

Read/
Write

Information Connector/
Pin Number

I/O
type

flap_lever 0 1024 R position CN15 pin 4 Ain
flap_indicator 0 1024 RW position CN15 pin 3 servo out
yoke_elevator 0 1024 R position CN19 pin 5 Ain
yoke_aileron 0 1024 R position CN19 pin 6 Ain
pedals_rudder 0 1024 R position CN18 pin 5 Ain
pedals_brake_l 0 1024 R position CN18 pin 6 Ain
pedals_brake_r 0 1024 R position CN18 pin 7 Ain
handbrake 0 1 R position CN1 pin 2 Din

Note: the “servo out” pin 3 on CN15 may drive a standard servo directly to drive an indicator for
 the flap position.

1) vac
This is vacuum, not volts

2) heading_correction
This is not the value of the rotary switch, but this value will be added to the "heading_compass"
value.

3) turn_inclino
This is the Turn Coordinator ball.

4) turn_rate
This is the little airplane Indicator in the Turn Coordinator gauge.

5) vor1_glideslope
Each bar is 5 units.

6) vor1_nav
Value 1 = To
Value 2 = From
Value 3 = Unknown

7) vor1_gs
Value 1 = GS
Value 2 = Unknown

One combination of the "vor1_nav" and "vor1_gs" flags is mechanically not possible:
vor1_gs = GS
vor1_nav = Unknown

8) vor1_localiser and vor2_localiser
Each dot is 2 units.

9) vor2_flag
Value 1 = To
Value 2 = From
Value 3 = Unknown

10) warning_...
These are the text messages on the warning panel.

11) cb_...

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 19

Currently, the circuit breaker variables are digital inputs only. In the future, outputs will become
available with the use of a demultiplexer.

12) switch_fuelselector
 Pin number:
Value 1 = position Off no pin connected
Value 2 = position L CN13 pin 4 brought to Gnd, other pins no connection
Value 3 = position R CN13 pin 5 brought to Gnd, other pins no connection
Value 4 = position Both CN13 pin 4 + 5 brought to Gnd, other pins no connection

13) switch_starter
 Pin number:
Value 1 = position Off CN17 pin 5 brought to Gnd, other pins no connection
Value 2 = position R CN17 pin 6 brought to Gnd, other pins no connection
Value 3 = position L CN17 pin 7 brought to Gnd, other pins no connection
Value 4 = position Both all pins no connection
Value 5 = position Start CN17 pin 8 brought to Gnd, other pins no connection

Error codes

A function always returns an error code consisting of an integer number.

The table below explains what each code means

TRC_SendData()
TRC_RecvData()

-1 = error: general error
 0 = no error
 1 = error: board not connected
 2 = error: device not calibrated
 3 = error: wrong command syntax
 4 = error: wrong variable syntax
 5 = error: wrong value syntax
 6 = error: too few parameters
 7 = error: too many parameters
 8 = error: device not writeable

TRC_Startup()
0 = no error
This function returns winsock error codes. Search the net for what these codes mean.

TRC_Cleanup()
0 = no error
This function returns winsock error codes. Search the net for what these codes mean.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 20

10. Communication Protocol description

When you do not use the source code examples included in the SDK to write your application, you
need to know the protocol used to access TRCCustom.exe.

It means that you have sufficient knowledge of TCP/IP programming.

Reading
To read data from a SimKits device (for example the airspeed gauge), send the following string over
TCP/IP:

"get airspeed"
(the two words are separated by a normal space, not an underscore):

Immediately after you send this string, you will receive a reply over TCP/IP. What you will get, is
either:

"airspeed 101"
(the airspeed gauge has the value 101)

Or you might get:

"error 5"
(this means that the gauge is not calibrated. See error codes in chapter 9)

Writing
To write data to a SimKits device (for example the airspeed gauge), send the following string over
TCP/IP:

"set airspeed 121"
(the pointer of the gauge goes to position 121)

Immediately after you send this string, you will receive a reply over TCP/IP. What you will get, is
either:

"ok"
(this means that no error occurred)

Or you might get:

"error 5"

(this means that the gauge is not calibrated. See error codes in chapter 9)

If you need to send a number including decimals, make sure you use a period as a decimal
separator, not a comma. (for example, you can send "set airspeed 101.12").

Received number strings can include decimals.

It is recommended that your program always checks for returned messages to check for possible
errors.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 21

11. Central Control Unit
 List and position of the I/O
connectors on the Central Control Unit

NOTE: The position of the texts on the picture on the left is not
identical to the position of the text on the board itself.

CN1 Handbrake
CN2 Avionics Switch
CN3 Quartz Counter
CN4 Throttle
CN5 Mixture
CN6 Prop
CN7 Light Control Input
CN8 Master Switch
CN9 Analog Ctrld. Fuel Left/Right *)
CN10 Analog Ctrld. EGT/Fuel Flow*)
CN11 Analog Ctrld. Oil Temp/Pressure *)
CN12 Analog Ctrld. Suction G./Amindicator *)
CN13 Fuel selector + Shut off
CN14 Digital Clock
CN15 Flaps
CN16 Trim wheel
CN17 Starter Switch
CN18 Rudder Pedals
CN19 Yoke
CN20 Compass
CN21 Airspeed Indicator
CN22 Tachometer
CN23 Vertical Speed Indicator
CN24 Attitude Indicator
CN25 Turn Coordinator
CN26 VOR 1 Indicator
CN27 VOR 2 Indicator
CN28 ADF Indicator
CN29 Heading Indicator
CN30 Altimeter
CN31 Warning Lights & Switch
CN32 Autopilot Switch + Warnings
CN33 Circuit breakers (4 outputs, 15 inputs)
CN34 Switches (16 inputs)
CN35 Servo Ctrld. Fuel Left/Right *)
CN36 Servo Ctrld. EGT/Fuel Flow *)
CN37 Servo Ctrld. Oil Temp/Pressure *)
CN38 Servo Ctrld. Suction G./AMindicator *)

*) The small analog meters are available only with servo motors built in
(CN35, 36, 37 and 38). The Analog Output controlled small analog
meters (CN9, 10, 11 and 12) are not supported in the present software
version. They also will not supported in future.

Note: All inputs are internally pulled-up to Vcc
 with a 10Kohm resistor on the CCU

C
N

1
C

N
2

C
N

3
C

N
4

C
N

5
C

N
6

C
N

7
C

N
8

C
N

9
C

N
10

C
N

11
C

N
12

C
N

43

C
N

13

C
N

14

C
N

15

C
N

16

C
N

17

C
N

18

C
N

19

C
N

20

C
N

21

C
N

22

C
N

23

C
N

24

C
N

25

C
N

26

C
N

27

C
N

35

C
N

36

C
N

37

C
N

38

C
N

30

C
N

31

C
N

32

C
N

29

C
N

28

C
N

33

C
N

34

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 22

12. Precautions when handling the CCU

Please read the information below carefully before taking the CCU out of the antistatic
protective plastic bag:

WARNING:
The Central Control Unit is a delicate piece of electronics. Please take precautions

when touching the board. It may be damaged by static electricity!

1. Leave the Central Control Unit in its protecting antistatic bag as long as
possible. Never leave it in or on top of the antistatic bag when power is
connected or when the USB cable is connected. This may cause the board to
be destroyed or your PC may be damaged!

2. Discharge yourselves - before touching the board - to something grounded.

3. Avoid touching the integrated circuits and other parts mounted on the board by
handling the board by the edges.

4. The connectors attached to the instruments can only be connected one way,
due to a positioning notch on each connector on the Central Control Unit as
well as on the flat cable of the instruments.

5. Connect the instruments one by one to the Central Control Unit, before
connecting the power supply and USB cable.

6. After connecting the instruments, first connect the power supply by using a
standard AT Power supply and utilizing the disk drive power connector from
the AT Power Supply.

7. Watch the small LED (red indicator) on the Central Control Unit, mounted
between the Power Connector and the USB connector. This LED has the
following conditions:

 The LED is not lighted
 - Power is off or:

 - Power is connected and there is no USB connection to the PC.

 The LED is steady On (does not flash)
 - There is a USB connection to the computer, but the firmware (internal software

for the Central ControlUnit) is not yet loaded from the PC. You have to start
the driver software (TRCLINK.EXE).

 The LED Flashes
 - Power is connected and the firmware is loaded into the Central Control Unit

memory.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 23

13. CCU Hardware Specifications

If you connect custom hardware to the CCU control board, you can damage the CCU or
your own hardware if the hardware specifications are not taken into account!

The chips, which are connected to the input and output pins of the CCU board, are designed to
drive low voltage - low amperage circuits only. You cannot connect for example led's, lamps, or
relays to the CCU. This will most certainly destroy the CCU board.

-Digital inputs and outputs:

Chip supply voltage (Vcc) is 5V.
Chip input voltage (logical 1) must be 5V. or minimum 3.5V.
Chip input voltage (logical 0) must be 0V. or maximum 0.7V.
All digital inputs have a pull up resistor of 10K to Vcc.

-Analog inputs:

Peak input current is ±20 mA
Input voltage must be between 0v. and +5V. Do not apply a negative voltage!

-Analog outputs
 Not supported in present software version.

If you want to use a digital output to drive a circuit, which draws more then 20 mA, then connect
the CCU output properly to a transistor or darlington circuit which in turn drives the high power
circuit. Details about this topic are beyond the scope of this manual.
Please only connect custom electronic devices (not from SimKits) to the CCU when you have
professional knowledge of electronics. The CCU is a delicated device and a shortage or other
mistreatment can cause damage to the board easily. Such damages are not covered under
warranty and will usually need a total replacement of the board.

SYMBOL PARAMETER MIN MAX UNIT CONDITIONS
VCC DC supply voltage -0.5 +7 V
±IIK DC input diode current 20 mA for VI < -0.5 or VI > VCC + 0.5 V
±IOK DC output diode current 20 mA for VO < -0.5 or VO > VCC + 0.5 V
±IO DC output source or sink current

 standard outputs
 bus driver outputs

25
35

mA
mA

for -0.5 V < VO < VCC + 0.5 V

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 24

14. Performing your first tests

When you have built one of the SimKits gauges, you must first use the Calibration program to
calibrate the gauge properly.

This process has to be carried out only once for each instrument and once again when you move the
SimKits gauges to be driven from another computer.

The calibration parameters are saved in a file on your PC called Calibrations.cfg and reside in the
directory C:\Program Files\TRC Development\SDK (or the directory where you installed the SDK
files in). This config file is already created during installation and contains default values prior to
calibration.

It is assumed that you have successfully installed the SDK software and all its files on your
computer. As you may have noticed, the installation has save a number of files on your PC. Not all
files are necessary for your programming. Some files are only necessary for a certain programming
environment.
However, these additional files for each programming language are so small (a few hundred
kilobytes maximum in general) that they will not fill-up your harddrive and it is recommended to leave
them on your PC.

It is also assumed, that you have sucessfully connected the CCU board to a PC AT Power Supply,
that you have connected the CCU Board to your PC and that your operating system has asked for
the proper USB driver, which has been installed successfully.

First of all you need to checks if the TCP/IP protocol is installed on your PC, prior to using the SDK:

To check if the TCP/IP protocol is installed, you can perform the following checks:

Windows 98:
At: "Start -> Settings -> Control Panel -> Network". Inside the list of installed devices, the TCP/IP
protocol must be present. If it is not, consult the Windows manual on how to install the TCP/IP
protocol.

Windows 2000:
At: "Start -> Settings -> Control Panel -> Network and Dial-Up Connections ", right click your network
device, and select properties. Inside the list of installed devices, the TCP/IP protocol must be
present. If it is not, consult the windows manual on how to install the TCP/IP protocol.

Windows NT:
At: "Start -> Settings -> Control Panel -> Network" click on the "Protocols" tab. Inside the list of
installed devices, the TCP/IP protocol must be present. If it is not, consult the windows manual on
how to install the TCP/IP protocol.

Windows XP:
At: "Start -> Settings -> Control Panel -> Network Connections" right click your network device, and
select properties. Inside the list of installed devices, the TCP/IP protocol must be present. If it is not,
consult the windows manual on how to install the TCP/IP protocol.

The SDK software is the TRCCustom.exe. This program must be running when you want to run a
program made using the SDK. Run TRCCustom.exe always at the same computer as where the
CCU is installed. Be sure to enter the correct IP address and port number. The IP address and port
number can be changed in every SDK program in File -> Options.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 25

Now compile the example project supplied for your programming environment (TRCsampleD.exe,
TRCsampleVB.exe, TRCsampleVC.exe or TRCsampleCB.exe

When running the example program dialog, there is a drop down list where you can select a device.
Select the device, which you must have have calibrated before. Enter a number in the edit box at the
right of the set button. Now press set. The device should indicate the number you selected. If it does,
you are ready to use the SDK. If the device does not indicate the correct value, go through the install
steps again to see if you missed something.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 26

15. Programming examples for Microsoft Visual C++

Example 1 - Driving a device - Startup

Before you can drive a device, a call to the startup function must be made once. This is for initializing
all necessary components.

error = TRC_Startup(IPaddress, portnumber);

- Return value: "error"
- Data type: int
This return value contains an error code.
(Error codes can be found in chapter 9)

- First function variable: "IPaddress"
- Data type: *char
This is the IP address of the PC where the data shall be send to (and may be the same computer).
Use standard windows tools (like winipcfg or ipconfig) to find the IP address of a PC. If the PC where
your application runs on is the same as where the CCU is installed, then use the local host address,
which is 127.0.0.1

- Second function variable: "portnumber"
- Data type: unsigned short
This is the port number. Default port number is 1927

Code example
int error = 0;
error = TRC_Startup("127.0.0.1", 1927);

Code example 2
int error = 0;
char *IPaddress;
unsigned short portnumber = 1927;
IPaddress = "127.0.0.1";
error = TRC_Startup(IPaddress, portnumber);

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 27

Example 2 - Driving a device - Sending Data

Once you have called the startup function, you can use the functions for sending information to the
SimKits Devices. This function will send data to a device once:

error = TRC_SendData(instrument_name, instrument_value);

- Return value: "error"
- Data type: int
This return value contains an error code. If the function returns a valid error, then the state of the
SimKits device will be undefined.
(Error codes can be found in chapter 9)

- First function variable: "instrument_name"
- Data type: char*
This is the name of the device to which you want to send a value. Each device has a pre-defined
name. A table of these names is included in chapter 9.

- Second function variable: "instrument_value"
- Data type: float
This is the value, representing the movement positions or readable output of the device. You must
use a value, which is of a valid magnitude for the appropriate device. For example, for the altimeter,
you can send a value between 0 and 100000 (feet), but for the heading indicator, any value greater
then 360 is incorrect and will give a wrong reading. A table with valid values for each device is
included at chapter 9.
It is not possible to destroy a servo or SimKits device by sending an invalid value to it.

Code example
int error = 0;
char *instrument_name;
float instrument_value = 15;
instrument_name = "heading_compass";
error = TRC_SendData(instrument_name, instrument_value);

Code example
float instrument_value1 = 0;
float instrument_value2 = 0;
float instrument_value3 = 0;
/* If you want to update all of the devices with a smooth movement, call
these functions at least 20 times a second */
TRC_SendData("adf_compass", instrument_value1);
TRC_SendData("alti_height", instrument_value2);
TRC_SendData("attitude_bank", instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 28

Example 3 - Driving a device - Receiving Data

This function enables you to receive information from the devices. The function reads a device once.

error = TRC_ RecvData(instrument_name, &instrument_value);

- Return value: "error"
- Data type: int
This return value contains an error code. If the error code is valid, then the value of
"instrument_value" will be invalid.

- First function variable : "instrument_name"
- Data type: char*
This is the name of the device from which you want to read a value.
(See chapter 9 for valid device names.)

- Second function variable : "instrument_value"
- Data type: float
The function returns the value of the device to this variable. After this call, the variable
"instrument_value" contains an updated value of the device when the error code returned was
a non-error.

Code example
int error = 0;
char *instrument_name;
float instrument_value = 0;
instrument_name = "heading_compass";
error = TRC_RecvData(instrument_name, &instrument_value);

Code example
float instrument_value1 = 0;
float instrument_value2 = 0;
float instrument_value3 = 0;
// Read more then one device
TRC_RecvData("adf_compass", &instrument_value1);
TRC_RecvData("alti_height", &instrument_value2);
TRC_RecvData("attitude_bank", &instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 29

Example 4 - Driving a device - Cleanup

Before you end your program, the function "TRC_Cleanup" must be called to free all used resources.

error = TRC_Cleanup();

- Return value: "error"
- Data type: int
This return value contains an error code.

Code example:

int error = 0;
error = TRC_Cleanup();

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 30

16. Programming examples for Borland C++ Builder

Example 1 - Driving a device - Startup

Before you can drive a device, a call to the startup function must be made once. This is for initializing
all necessary components.

error = TRC_Startup(IPaddress, portnumber);

- Return value: "error"
- Data type: int
This return value contains an error code.
(Error codes can be found in chapter 9)

- First function variable: "IPaddress"
- Data type: *char
This is the IP address of the PC where the data shall be send to (and may be the same computer).
Use standard windows tools (like winipcfg or ipconfig) to find the IP address of a PC. If the PC where
your application runs on is the same as where the CCU is installed, then use the local host address,
which is 127.0.0.1

- Second function variable: "portnumber"
- Data type: unsigned short
This is the port number. Default port number is 1927

Code example
int error = 0;
error = TRC_Startup("127.0.0.1", 1927);

Code example
int error = 0;
char *IPaddress;
unsigned short portnumber = 1927;
IPaddress = "127.0.0.1";
error = TRC_Startup(IPaddress, portnumber);

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 31

Example 2 - Driving a device - Sending Data

Once you have called the startup function, you can use the functions for sending information to the
SimKits Devices. This function will send data to a device once:

error = TRC_SendData(instrument_name, instrument_value);

- Return value: "error"
- Data type: int
This return value contains an error code. If the function returns a valid error, then the state of the
SimKits device will be undefined.
(Error codes can be found in chapter 9)

- First function variable: "instrument_name"
- Data type: char*
This is the name of the device to which you want to send a value. Each device has a pre-defined
name. A table of these names is included in chapter 9.

- Second function variable: "instrument_value"
- Data type: float
This is the value, representing the movement positions or readable output of the device. You must
use a value, which is of a valid magnitude for the appropriate device. For example, for the altimeter,
you can send a value between 0 and 100000 (feet), but for the heading indicator, any value greater
then 360 is incorrect and will give a wrong reading. A table with valid values for each device is
included at chapter 9.
It is not possible to destroy a servo or SimKits device by sending an invalid value to it.

Code example
int error = 0;
char *instrument_name;
float instrument_value = 15;
instrument_name = "heading_compass";
error = TRC_SendData(instrument_name, instrument_value);

Code example
float instrument_value1 = 0;
float instrument_value2 = 0;
float instrument_value3 = 0;
/* If you want to update all of the devices with a smooth movement, call
these functions at least 20 times a second */
TRC_SendData("adf_compass", instrument_value1);
TRC_SendData("alti_height", instrument_value2);
TRC_SendData("attitude_bank", instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 32

Example 3 - Driving a device - Receiving Data

This function enables you to receive information from the devices. The function reads a device once.

error = TRC_ RecvData(instrument_name, &instrument_value);

- Return value: "error"
- Data type: int
This return value contains an error code. If the error code is valid, then the value of
"instrument_value" will be invalid.

- First function variable : "instrument_name"
- Data type: char*
This is the name of the device from which you want to read a value.
(See chapter 9 for valid device names.)

- Second function variable : "instrument_value"
- Data type: float
The function returns the value of the device to this variable. After this call, the variable
"instrument_value" contains an updated value of the device when the error code returned was
a non-error.

Code example
int error = 0;
char *instrument_name;
float instrument_value = 0;
instrument_name = "heading_compass";
error = TRC_RecvData(instrument_name, &instrument_value);

Code example
float instrument_value1 = 0;
float instrument_value2 = 0;
float instrument_value3 = 0;
// Read more then one device
TRC_RecvData("adf_compass", &instrument_value1);
TRC_RecvData("alti_height", &instrument_value2);
TRC_RecvData("attitude_bank", &instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 33

Example 4 - Driving a device - Cleanup

Before you end your program, the function "TRC_Cleanup" must be called to free all used resources.

error = TRC_Cleanup();

- Return value: "error"
- Data type: int
This return value contains an error code.

Code example
int error = 0;
error = TRC_Cleanup();

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 34

17. Programming examples for Microsoft Visual Basic

Example 1 - Driving a device - Startup

Before you can drive a device, a call to the startup function must be made once. This is for initializing
all necessary components.

Call TRC_Startup(Winsock1, IPaddress, portnumber)

- First function variable: "Winsock1"
- Data type: Winsock
This is the name of the winsock component you placed on top of your form.

- Second function variable: "IPaddress"
- Data type: String
This is the IP address of the PC where the data shall be send to (and may be the same computer).
Use standard windows tools (like winipcfg or ipconfig) to find the IP address of a PC. If the PC where
your application runs on is the same as where the CCU is installed, then use the local host address,
which is 127.0.0.1

-Third function variable: "portnumber"
- Data type: Integer
This is the port number. Default port number is 1927

Code example
Call TRC_Startup(Winsock1, "127.0.0.1", 1927)

Code example
Dim IPaddress As String
IPaddress = "127.0.0.1"
Dim port As Integer
portnumber = 1927
Call TRC_Startup(Winsock1, IPaddress, portnumber)

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 35

Example 2 - Driving a device - Sending Data

Once you have called the startup function, you can use the functions for sending information to the
SimKits Devices. This function will send data to a device once:

error = TRC_SendData(instrument_name, instrument_value)

-Return value: "error"
-Data type: Long
This return value contains an error code. If the function returns a valid error, then the state of the
SimKits device will be undefined.
(Error codes can be found in chapter 9)

-First function variable: "instrument_name"
-Data type: String
This is the name of the device to which you want to send a value. Each device has a pre-defined
name. A table of these names is included in chapter 9.

-Second function variable : "instrument_value"
-Data type: Single
This is the value, representing the movement positions or readable output of the device. You must
use a value, which is of a valid magnitude for the appropriate device. For example, for the altimeter,
you can send a value between 0 and 100000 (feet), but for the heading indicator, any value greater
then 360 is incorrect and will give a wrong reading. A table with valid values for each device is
included at chapter 9.
It is not possible to destroy a servo or SimKits device by sending an invalid value to it.

Code example
Dim error As Long
Dim instrument_name As String
Dim Instrument_value As Single
instrument_value = 15
instrument_name = "heading_compass"
error = TRC_SendData(instrument_name, instrument_value)

Code example
Dim Instrument_value1 As Single
Dim Instrument_value2 As Single
Dim Instrument_value3 As Single
instrument_value1 = 12
instrument_value2 = 1400
instrument_value3 = 30
' If you want to update all of the devices with a smooth movement, call
these functions at least 20
' times a second
TRC_SendData("adf_compass", instrument_value1)
TRC_SendData("alti_height", instrument_value2)
TRC_SendData("attitude_bank", instrument_value3)
' etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 36

Example 3 - Driving a device - Receiving Data

This function enables you to receive information from the devices. The function reads a device once.

error = TRC_ RecvData(instrument_name, instrument_value)

-Return value: "error"
-Data type: Long
This return value contains an error code. If the error code is valid, then the value of
"instrument_value" will be invalid.

-First function variable : "instrument_name"
-Data type: String
This is the name of the device from which you want to read a value.
(See chapter 9 for valid device names.)

-Second function variable : "instrument_value"
-Data type: Single
The function returns the value of the device to this variable. After this call, the variable
"instrument_value" contains an updated value of the device when the error code returned was
a non-error.

Code example
Dim error As Long
Dim instrument_name As String
Dim Instrument_value As Single
instrument_name = "heading_compass"
error = TRC_RecvData(instrument_name, instrument_value)

Code example
Dim Instrument_value1 As Single
Dim Instrument_value2 As Single
Dim Instrument_value3 As Single
' Read more then one device
TRC_RecvData("adf_compass", instrument_value1)
TRC_RecvData("alti_height", instrument_value2)
TRC_RecvData("attitude_bank", instrument_value3)
' etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 37

Example 4 - Driving a device - Cleanup

Before you end your program, the function "TRC_Cleanup" must be called to free all used resources.

Code example:
Call TRC_Cleanup()

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 38

18. Programming examples for Borland Delphi

Example 1 - Driving a device - Startup

Before you can drive a device, a call to the startup function must be made once. This is for initializing
all necessary components.

error := TRC_Startup(IPaddress, portnumber);

-Return value: "error"
-Data type: Integer
This return value contains an error code.
(Error codes can be found in chapter 9)

-First function variable: "IPaddress"
-Data type: String
This is the IP address of the PC where the data shall be send to (and may be the same computer).
Use standard windows tools (like winipcfg or ipconfig) to find the IP address of a PC. If the PC where
your application runs on is the same as where the CCU is installed, then use the local host address,
which is 127.0.0.1

-Second function variable: "portnumber "
-Data type: Word
This is the port number. Default port number is 1927

Code example 1:

var error : Integer = 0;
error := TRC_Startup('127.0.0.1', 1927);

Code example 2:

var error : integer = 0;
var IPaddress : String = '127.0.0.1';
var portnumber : Word = 1927;
error := TRC_Startup(IPaddress, portnumber);

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 39

Example 2 - Driving a device - Sending Data

Once you have called the startup function, you can use the functions for sending information to the
SimKits Devices. This function will send data to a device once:

error := TRC_SendData(instrument_name, instrument_value);

-Return value: "error"
-Data type: Integer
This return value contains an error code. If the function returns a valid error, then the state of the
SimKits device will be undefined.
(Error codes can be found in chapter 9)

-First function variable: "instrument_name"
-Data type: String
This is the name of the device to which you want to send a value. Each device has a pre-defined
name. A table of these names is included in chapter 9.

-Second function variable: "instrument_value"
-Data type: Real
This is the value, representing the movement positions or readable output of the device. You must
use a value, which is of a valid magnitude for the appropriate device. For example, for the altimeter,
you can send a value between 0 and 100000 (feet), but for the heading indicator, any value greater
then 360 is incorrect and will give a wrong reading. A table with valid values for each device is
included at chapter 9.
It is not possible to destroy a servo or SimKits device by sending an invalid value to it.

Code example
var error : integer = 0;
var instrument_name : String = 'heading_compass';
var instrument_value : Real = 15;
error := TRC_SendData(instrument_name, instrument_value);

Code example
var instrument_value1 : Real = 0;
var instrument_value2 : Real = 0;
var instrument_value3 : Real = 0;
(* If U want to update all of the devices with a smooth movement, call
these functions at least 20 times a second *)
TRC_SendData('adf_compass', instrument_value1);
TRC_SendData('alti_height', instrument_value2);
TRC_SendData('attitude_bank', instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 40

Example 3 - Driving a device - Receiving Data

This function enables you to receive information from the devices. The function reads a device once.

error := TRC_ RecvData(instrument_name, instrument_value);

-Return value: "error"
-Data type: Integer
This return value contains an error code. If the error code is valid, then the value of
"instrument_value" will be invalid.

-First function variable : "instrument_name"
-Data type: String
This is the name of the device from which you want to read a value.
(See chapter 9 for valid device names.)

-Second function variable : "instrument_value"
-Data type: Real
The function returns the value of the device to this variable. After this call, the variable
"instrument_value" contains an updated value of the device when the error code returned was
a non-error.

Code example
var error : Integer = 0;
var instrument_name : String = 'heading_compass';
var instrument_value : Real = 0;
error := TRC_RecvData(instrument_name, instrument_value);

Code example
var instrument_value1 : Real = 0;
var instrument_value2 : Real = 0;
var instrument_value3 : Real = 0;
// Read more then one device
TRC_RecvData('adf_compass', instrument_value1);
TRC_RecvData('alti_height', instrument_value2);
TRC_RecvData('attitude_bank', instrument_value3);
// etc.

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 41

Driving the devices - Cleanup

Before you end your program, the function "TRC_Cleanup" must be called to free all used resources.

error := TRC_Cleanup();

-Return value: "error"
-Data type: Integer
This return value contains an error code.

Code example
var error : Integer = 0;
error := TRC_Cleanup();

TRC Development Software Development Kit

Version 1.0 - July 2003 Page 42

SimKits and its accompanying software is a product of:

Company Address:
TRC Development b.v.
Gatwickbaan 9
3045 AP ROTTERDAM AIRPORT
THE NETHERLANDS

Postal Address:
TRC Development b.v.
P.O.Box 12004
3004 GA ROTTERDAM AIRPORT
THE NETHERLANDS

All Products carry a limited warranty of 12 months after purchase.
Please look for warrant text on our website: www.therealcockpit.com
All information requests and support requests can be directed to:
support@therealcockpit.com

Support is only given via email. It is our intention to reavct on each email within

Our office hours are:
Monday till Friday 09:00AM till 05:00PM (09:00-17:00) Central European Time.
(03:00AM – 02:00PM Eastern Time)

Phone: (from USA): 011 31 10 439 02 00, (from Europe): 0031 10 439 02 00
Fax: (from USA): 011 31 10 439 02 10, (from Europe): 0031 10 439 02 10

Shipping
Our main shipper is UPS for overnight delivery. For normal shipments we use TPG.

Order taking
We accept most credit cards. When ordering products, your credit card is only charged at the day
of shipping. Our secure credit card handling over the internet is done by Bibit (www.bibit.com).

Privacy Statement
TRC Development will never use your email address for any other purpose than informing you
about new products or other breaking news on The Real Cockpit products or software.
When you do not wish to receive information by email, you can remove yourself from the mailing
list at any time. Please see: www.therealcockpit.com.

Returning goods for repair or replace
Whenever you would like to return a product for repair or replace (at the choice of TRC
Development b.v.) you will need a so-called RMA Number. RMA Numbers can be requested by
email or by fax.

See our website support area for details on how to return a product. There you find a form which –
when information is entered – will supply you with the proper RMA number:
http://www.therealcockpit.com/support/index.php?boxaction=support_return

The names "Borland, Delphi and Microsoft" and are registered trade names of the respective owners.

